Erratum

Daniel S. Adler a,*, Ofer Bar-Yosef b, Anna Belfer-Cohen c, Nicholas Tushabramishvili d, E. Boaretto e,f, N. Mercier g, H. Valladas h, W.J. Rink i

a Department of Anthropology, 354 Mansfield Road, Unit 2176, University of Connecticut, Storrs, CT 06269-2176, USA
b Harvard University, Department of Anthropology, Peabody Museum, 11 Divinity Ave., Cambridge, MA 02138, USA
c Institute of Archaeology, Hebrew University, Mt. Scopus, Jerusalem 91905, Israel
d Georgian National Museum, 3 Rustaveli Ave., Tbilisi, Georgia
e Radiocarbon Dating and Cosmogenic Lab, Kimmel Center for Archaeological Science, Weizmann Institute of Science, 76100 Rehovot, Israel
f Department of Land of Israel Studies and Archaeology, Bar Ilan University, 52900 Ramat Gan, Israel
g Institut de recherche sur les Archéomatériaux, UMR 5060, CNRS – Univ. Bordeaux, Centre de Recherche en Physique Appliquée à l’Archéologie (CRPAA), Maison de l’archéologie, 33607 Pessac cedex, France
h Laboratoire des Sciences du Climat et de l’Environnement, Domaine du CNRS, Avenue de la Terrasse – Bat. D2, 91198 Gif sur Yvette, France
i School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada

The publisher regrets that Figures 7 and 8 of this article were not printed in color. To ensure accurate interpretation, Figures 7 and 8 appear below in their correct color format.

We apologize most sincerely for this error.
Fig. 7. Age-depth graph of Ortvale Klde, with radiocarbon results (ka 14C BP) plotted against stratigraphy. Dated samples are distinguished by material (mat.), separating bone (b.) and charcoal (cc.), and by laboratory (lab.), with “AA” representing the NSF-Arizona AMS Laboratory (USA), and “RTT” and “RTA” the Weizmann Institute of Science (Israel). All measurements are plotted with 1σ while determinations of infinite age are indicated by an arrow. Horizontal gray bars indicate the most likely age estimates based on stratigraphic position and age overlap. Green shading indicates the weighted mean of several determinations within the same geological layer that are statistically identical at 2σ. The five boxes with gray dotted lines denote five individual samples split between the NSF-Arizona AMS Laboratory and the Weizmann Institute of Science. The pink dotted line indicates the oldest possible estimate for the Middle to Upper Paleolithic boundary at Ortvale Klde (~38.0 ka 14C BP), while the vertical pink bar indicates the age range during which this “transition” can be dated (~38.0 and ~34.5 ka 14C BP). This age range is determined based on several criteria, including the precise stratigraphic position of each sample and the dates from Layers 5 and 4d.

Fig. 8. Conversion of radiocarbon measurements from Ortvale Klde to calendar ages (cal BC/BP) to the left (see: Method), compared with the paleoclimate signatures (δ¹⁸O) recorded in the Greenland “GRIP” Ice Core, scaled on the GreenlandHulu-age-model (BPGRIP-Hulu; cf. Weninger and Jöris, 2008), to the right. Modest warm interstadial oscillations are labeled in red and span GI 1 (Greenland Interstadial), the Late Glacial interstadial complex, through GI 16/17 (~58.0 BPGRIP-Hulu; ~56.0 ka cal BC). Extreme cold (Heinrich) events recorded in the North Atlantic are labeled in light blue and span H0 (Younger Dryas) to H6 (the end of the 1st maximum cold of the last glacial cycle). Method: Most likely radiocarbon age-estimates (dark gray bars) and weighted means (green bars) from Figure 7 are plotted on the radiocarbon time-scale and transferred to calendar ages (cal BC/BP) using the CalPal-2007Hulu calibration data set in the center of the left diagram (www.calpal.de; cf. www.calpal-online.de). Thermoluminescence (TL) estimates for Layers 4c–7 are indicated in red and are plotted at 1σ. Calendric age estimates for Layers 9 and 10 are based on TL dating only. As in Figure 7, the pink dotted line indicates the oldest possible estimate for the Middle to Upper Paleolithic boundary at Ortvale Klde (~38.0 ka 14C BP), while the pink bar indicates the age range during which this “transition” can be dated (~38.0 and ~34.5 ka 14C BP). This age range is determined based on several criteria, including the precise stratigraphic position of each sample and the dates from Layers 5 and 4d. The patterns observed within the radiocarbon calibration record of CalPal-2007Hulu “translate” the entire time-span of the Middle to Upper Paleolithic “transition” into a relatively sharp “boundary” at around GI 10.