TESTING ECOLOGICAL THEORY USING THE INFORMATION-THEORETIC APPROACH: EXAMPLES AND CAUTIONARY RESULTS

SHANE A. RICHARDS

Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada

Abstract. Ecologists are increasingly applying model selection to their data analyses, primarily to compare regression models. Model selection can also be used to compare mechanistic models derived from ecological theory, thereby providing a formal framework for testing the theory. The Akaike Information Criterion (AIC) is the most commonly adopted criterion used to compare models; however, its performance in general is not very well known. The best model according to AIC has the smallest expected Kullback-Leibler (K-L) distance, which is an information-theoretic measure of the difference between a model and the truth. I review the theory behind AIC and demonstrate how it can be used to test ecological theory by considering two example studies of foraging, motivated by simple foraging theory. I present plausible truths for the two studies, and models that can be fit to the foraging data. K-L distances are calculated for simulated studies, which provide an appropriate test of AIC. Results support the use of a commonly adopted rule of thumb for selecting models based on AIC differences. However, AICc, a corrected version of AIC commonly used to reduce model selection bias, showed no clear improvement, and model averaging, a technique to reduce model prediction bias, gave mixed results.

Key words: Akaike Information Criterion (AIC); foraging; model averaging; model selection; theoretical ecology.

INTRODUCTION

A key problem when analyzing ecological data is identifying which model, or models, best describe the data from a set of models proposed a priori, and is referred to as model selection. Often, the objective of an ecological analysis is to identify factors that most affect some response variable of interest. For example, the objective may be to identify habitat variables that influence species presence (e.g., Fernández et al. 2003, Godínez-Domínguez and Freire 2003, Westphal et al. 2003). In these types of problems, model selection generally involves the comparison of regression models.

Another common objective of a data analysis is to infer key ecological processes that generated the data. Regression models may describe patterns in the data, but often do not provide much insight about processes. However, models that explicitly incorporate ecological processes and dynamics can be developed from ecological theory (Gurney and Nisbet 1998). Model selection is increasingly being applied to mechanistic models to infer processes affecting population dynamics (Hilborn and Mangel 1997, Leirs et al. 1997, Fujiwara and Caswell 2001) and evolutionary dynamics (Posada and Buckley 2004), to interpret results from capture–recapture studies (Anderson et al. 1998), and to address problems involving fisheries management (Hilborn and Walters 1992, Helu et al. 2000). The ability to quantify and compare mechanistic models means that ecological theory can be rigorously tested. Model selection is useful in this case because it can help identify systems that are difficult to predict, thereby suggesting important directions for research. For example, if no single model is found to be clearly best, then new ecological hypotheses may need to be developed, or more data collected.

Model selection involves quantifying model performance based on some criterion. Information theory (IT) can be used to derive such a criterion and its application is becoming increasingly common in ecology (Burnham and Anderson 2002). The Akaike Information Criterion (AIC) is the most commonly adopted measure used to quantify and compare models under the IT approach. This measure combines the goodness of fit of a model to data and the number of estimated model parameters. AIC reflects model parsimony, which is a trade-off between prediction bias and parameter uncertainty. AIC is simple to implement and many statistical packages report the AIC value of a model. Burnham and Anderson (2002) present the theory behind the IT approach and AIC, and is primarily aimed at an ecological audience. A concise summary of the approach is presented in Burnham and Anderson (2001).

A key assumption of AIC is that model performance is measured by its expected Kullback-Leibler (K-L) distance (Kullback and Leibler 1951). The K-L distance quantifies the discrepancy between the distribution describing the true probability of observing outcomes from a study and the distribution predicted by the model. Despite an increase in the use of AIC, its
The set of predicted probabilities associated with all possible study outcomes. Kullback and Leibler (1951) used IT to derive a metric describing the information lost when distribution π is used to approximate the true distribution p, namely,

$$I(p, \pi) = \sum_j p_j \ln \left(\frac{p_j}{\pi_j} \right).$$

I is referred to as the Kullback-Leibler distance. When outcomes are continuous the K-L distance is calculated in the same manner except that p and π are replaced by $f(x)$ and $\pi(x)$, respectively, and the summation is replaced by integration with respect to x.

For models to make quantitative predictions, their parameters, denoted θ, need to be assigned values. The best parameter values for a model, according to the IT approach, are those that generate predictions $\pi(\theta)$ that minimize the K-L distance. The K-L distance cannot be used directly to determine the best parameters for a model because it requires knowledge of the truth p, which in practice is unknowable. However, parameters of a model can be estimated readily by fitting the model to data using maximum likelihood. Akaike (1973) suggested that the expected K-L distance of a model when fit to data using maximum likelihood could provide a basis for comparing models. The model with the lowest expectation might be considered the best because it most consistently has a low K-L distance when fit to data.

If the study were repeated many times and model parameters re-estimated each time, then the expected K-L distance for a model would be

$$E_p[I(p, \pi)] = \sum_j p_j I(p, \pi(\hat{\theta}_j)).$$

where $\hat{\theta}_j$ denotes the maximum-likelihood estimates for the parameters of a model when fit to outcome j. The model having the lowest expected K-L distance is referred to as the best K-L model, and is the model we wish to identify.

Substituting Eq. 1 into Eq. 2 gives

$$E_p[I(p, \pi)] = \sum_j p_j \ln p_j - E_p \left[\sum_j p_j \ln \pi_j(\hat{\theta}_j) \right].$$

The first term on the right side of Eq. 3, $\sum_j p_j \ln p_j$, depends only on the fixed truth p, and hence, is included in the calculation of $E_p[I]$ for all models considered. Let this constant term be denoted c. Akaike (1973) showed that the last term could be estimated by

$$E_p \left[\sum_j p_j \ln \pi_j(\hat{\theta}_j) \right] \approx \ln L(\hat{\theta}) - K$$

where $\ln L(\hat{\theta})$ is the maximum log-likelihood of the model, given outcome j, and K is the number of estimated model parameters. Note that $L(\hat{\theta}) = \pi(\hat{\theta})$. Given Eq. 4, Akaike (1973) proposed the Akaike Infor-
AIC (5) for model \(M \) when outcome \(j \) is observed:
\[
\text{AIC}(M) = -2 \ln L(\hat{\theta}_j) + 2K. \tag{5}
\]
Substituting Eqs. 3 and 4 into Eq. 5, AIC can be shown to estimate
\[
\text{AIC}(M) = 2[E_p[I(p, \pi)] - c]. \tag{6}
\]
Hence, the lower the AIC value associated with a model, the more likely it has the lowest expected K-L distance (i.e., is the best K-L model). The simplest model selection approach is to calculate the AIC value for each competing model and then choose the model with the lowest value as being the best K-L model. However, this approach ignores the fact that AIC is an estimate; because of sampling error, a model not having the lowest AIC value could be the model that has the lowest expected K-L distance. The problem now is to identify which models are likely to have the lowest expected K-L distance, and thus, should be kept and used for inference.

AIC values by themselves are relatively uninformative, what is important is the differences in AIC values among competing models. It is convenient to calculate a \(\Delta \) value for each model, which indicates the difference in the AIC value of the model from the minimum AIC value of all models considered, i.e.,
\[
\Delta(M) = \text{AIC}(M) - \text{AIC}_{\text{min}}. \tag{7}
\]
Burnham and Anderson (2002) suggested the following rule of thumb for selecting among models. Models with a \(\Delta \) value <2 are all likely to be the best K-L model, and hence, they should all be used when making further inferences about a system. Models with a \(\Delta \) value in the range 4–7 are less likely to be best, but probably should not be discounted. Models with a \(\Delta \) value >10 are extremely unlikely to be the best K-L model and can be ignored.

Akaike (1983) proposed that the likelihood of model \(M \) being the best K-L model, given the data, is proportional to the quantity \(\exp(-\Delta(M)/2) \), which leads to the notion of model weights. The Akaike weight of model \(M_n \) is
\[
w_n = \frac{\exp[-\Delta(M_n)/2]}{\sum \exp[-\Delta(M)/2]}.	ag{8}
\]
These weights sum to 1 across models and have been interpreted as an estimate of the proportion of times that model \(M_n \) will be chosen as having the lowest AIC value if the study were repeated (Burnham and Anderson 2002). These weights are also often interpreted as the probability that model \(M_n \) is the best K-L model.

In some cases, quantitative predictions are of interest. Predictions could be made from the fitted model having the lowest AIC value; however, as AIC is an estimate, it seems reasonable to make predictions that take into account model uncertainty. Burnham and Anderson (2002) suggested that model bias could be reduced by model averaging, whereby predictions from each model are weighted by their Akaike weight. This new prediction is often termed unconditional because it is not conditional on a single model. Akaike weights are often used to calculate unconditional estimates of regression coefficients (Buckland et al. 1997).

The AIC estimate given by Eq. (5) assumes asymptotic properties that are well approximated when there are a large number of independent observations. Burnham and Anderson (2002) suggested that, when the ratio of observations to model parameters is low (e.g., \(N/K < 40 \)), then a corrected version of AIC should be used:
\[
\text{AIC}_c(M) = \text{AIC}(M) + \frac{2K(K + 1)}{N - K - 1}. \tag{9}
\]
AIC\(_c\) assumes that the data were generated by a fixed-effect linear model with homogeneous, normally distributed errors, and the models analyzed also have this form (Hurvich and Tsai 1989). Despite these assumptions, the above correction factor is suggested as being useful in other contexts. Corrected \(\Delta \) values and Akaike weights can also be calculated with AIC replaced by AIC\(_c\).

Foraging Examples

Consider a study of pollen dispersal among flowers of the perennial plant, Aquilegia nigrovenosa. Bumble bees are a major pollinator of this species and their foraging behavior, in general, has been well studied (e.g., Pyke 1982, Cresswell 1990). If bumble bees maximize their long-term net rate of energy intake from collecting nectar (Pyke 1982), they should forage among plants so that the expected nectar reward received from each plant visited is equal. If flowers on A. nigrovenosa all produce nectar at a similar rate, then the expected reward when visiting an A. nigrovenosa plant will be equalized among plants if bumblebees visit plants at a rate proportional to the number of open flowers on the plant (Possingham 1992). This simple theory also suggests that if microhabitat affects nectar production, then it may influence plant visitation rates (Dreisig 1995). Two examples of microhabitat variables that affect nectar production are soil moisture and sunlight (Zimmerman 1983). Numerous observational studies and experiments have tested these ideas (e.g., Klinkhamer and de Jong 1990, Kadmon 1992, Mitchell et al. 2004).

To illustrate how the above foraging theory could be tested, I now consider two simple hypothetical observational studies, and models motivated by the theory that could be fit to the resulting data. For each study I present a plausible truth, \(p \). The IT approach was tested by comparing the theory presented in the previous section with results from simulated study trials. Expectations with respect to \(p \) were accurately estimated by averaging over 2000 trials. These simulations...
were used to assess (1) AIC and AICc, estimates of relative, expected K-L distance, (2) the rule of thumb for selecting models and retaining the best K-L model, (3) Akaike weight as the probability of being the best K-L model, and (4) reduction of model bias by model averaging.

Study 1: methods

The following study could be conducted to test whether flower number and microhabitat affect plant visitation rates by bumble bees. Suppose the study was performed in an open forest containing numerous A. brevistyla plants, and plant microhabitat was defined by the level of shade, with the expectation that shaded plants produce nectar at a lower rate. Plants were placed into one of eight categories according to the number of open flowers (one to four) and whether or not they were shaded. For each category, \(r \) plants were chosen randomly, giving 8\(r \) plants in total. During a 30-min period when bumble bees were active the randomly chosen plants were observed and noted whether they received at least one bumble bee visit.

Study 1: truth and approximating models

First, I present a possible truth for this study. Let \(s \) denote a plant’s shading status, where \(s = 0 \) for unshaded plants, and \(s = 1 \) for shaded plants. Suppose bumble bee arrivals to a plant is a constant Poisson process. Let \(\alpha(s, f) \) be the true long-term rate that A. brevistyla plants received bumble bee visits if they had \(f \) open flowers and shading status \(s \). The true probability that a plant received one or more bumble bee visits during a time period of duration \(\Delta t \) is

\[
q(s, f) = 1 - \exp[-\Delta \alpha(s, f)].
\]

(10)

Fig. 1 shows a possible example of the true probabilities that a plant received at least one visit. In this case, the truth was generated by a model with eight parameters (i.e., an \(\alpha \) for each of the eight plant categories) and describes the case where arrivals are near linearly related to flower number and negatively related to shading. In reality, the truth could be thought of as being generated by a model with an infinite number of parameters (Burnham and Anderson 2002).

Outcomes from this study can be summarized by eight integers, \(n(s, f) \), denoting the number of plants with \(f \) flowers and shading status \(s \) that received at least one bumble bee visit \((0 \leq n(s, f) \leq r)\). The number of outcomes that could be observed with this study, denoted \(Z \), rises very quickly as plant replication \(r \) is increased, \(Z = (r + 1)^8 \). Even with just one plant per category \((r = 1, \text{ eight plants in total})\), there are 256 possible outcomes. For \(r = 5 \) (40 plants) there are 1,679,616 possible outcomes. The \(p_i \) \((i = 1, \ldots, Z)\) can be calculated using the following:

\[
p_i = \prod_{r=0}^{1} \prod_{f=1}^{4} B(n(s, f); r, q(s, f))
\]

(11)

where \(n(s, f) \) is the number of plants with trait \((s, f)\) visited according to outcome \(i \), and \(B(n; r, q) \) is the binomial function describing the probability of observing \(n \) successes from \(r \) trials, given that successes occur with probability \(q \) and trials are independent. Fig. 2 shows the true distribution \(p \) when \(r = 1 \) and truth is parameterized by the probabilities in Fig. 1. For simplicity, I assumed that the truth did not describe a distribution of outcomes where the data were overdispersed. Examining the effect of overdispersed data on AIC estimates will be the focus of future work.

To test the foraging theory presented, I compared four models, denoted \(M_i \) \((i = 1, \ldots, 4)\), which differed in whether or not shading status or flower number affected bumble bee arrival rate \(\alpha \). The models can be summarized as follows.

\(M_1: \alpha(s, f) = \alpha \) (arrival rate is constant across plants, regardless of shading status and flower number, \(\theta = \{\alpha\} \)).

\(M_2: \alpha(s, f) = \alpha_s \) (arrival rate differs among shade environments, but not with flower number, \(\theta = \{\alpha_s, a_1\} \)).

\(M_3: \alpha(s, f) = \alpha_f \) (arrival rate varies linearly with flower number, but not among shade environments, \(\theta = \{\alpha_f, b_1\} \)).

\(M_4: \alpha(s, f) = \alpha_s + \alpha_f \) (arrival rate differs among shade environments and varies linearly with flower number, \(\theta = \{\alpha_s, \alpha_f, b_1\} \)).

Models \(M_1 \) and \(M_4 \) assume the rate of arrival is linearly related to flower number, in accordance with theory. If model \(M_1 \) fits the data well, then it might be that bumble bee forage randomly among plants, or some other unmeasured factors are important, in which
case alternative hypotheses should be considered. An unconditional model can be derived by considering the following weighted arrival rate:

$$\tilde{\alpha} = \sum_m w_m \hat{\alpha}_m$$ \hspace{1cm} (12)

where $\hat{\alpha}_m$ is the maximum-likelihood arrival rate estimated by model M_m.

Study 1: results

The $\pi(\theta)$ and K-L distance for each model can be calculated by substituting the model’s estimate of α into Eqs. 10 and 11. In this example, none of the four models describe the truth presented in Fig. 2 exactly. Model M_4 best approximates the truth, and this occurs when its two parameters are set to $b_0 = 0.81$ and $b_1 = 0.31$ visits per flower per hour (Figs. 1 and 2). Model M_4 can approximate the truth well because it incorporates two aspects of the truth; namely, variation among microhabitats and the positive effect of flowers. For most ecological examples, no model should be expected to be able to exactly describe the truth (i.e., $I(p, \pi(\theta)) > 0$ for all θ).

To illustrate the AIC definition of best model, I fit the four models to all 256 possible outcomes when $r = 1$ using maximum likelihood. The model having the lowest K-L distance depended on the outcome observed (Fig. 2). Even though model M_4 had the smallest K-L distance for a number of outcomes it also often performed poorly. Model M_4 is not a good general model in this example because it overfits the data; that is, it reproduces the data well when fit to some outcomes but performs poorly when fit to others (Draper 1995). At the same time, models M_1 and M_2 underfit the data because they simplify the system too much, which results in biased predictions. Models M_1 and M_2 typically underestimate visits to many-flowered plants and overestimate visits to few-flowered plants. In this example, Model M_3 is the most parsimonious model as it often describes the system relatively well with only one parameter.

Even though model M_3 was the best K-L model when $r = 1$, for larger r the best model was the more complex model M_4 (Table 1). M_4 and M_4 both included the effect of flower number, indicating that flower number affected arrival rates more than microhabitat (Fig. 1). For all three cases of r considered, the model most likely to be chosen by AIC had the lowest expected K-L distance. This result was also true for AICc, except when $r = 3$ (Table 1). For $r = 5$, both AIC and AICc provided...
reducing aging was less effective at reducing model bias (i.e., expected K-L distance) were also positively correlated; however, contrary to expectation, model averaging was less effective at reducing model bias (i.e., expected K-L distance) than the lowest AIC model. The rule of thumb for retaining the best K-L model performed well in all cases (Table 1). AIC values calculated from AICc values performed slightly better than AIC values when \(r = 1 \); however, AIC was better for \(r = 3 \) and 5. In all cases, the best K-L model was retained for at least 77% of the trials when the threshold was 2, and for at least 97% of the trials when the threshold was 7.

Expected Akaike weights and the probability a model would be chosen by AIC were positively correlated; however, there was large variation in the weights across the 2000 trials (Table 1). Expected Akaike weights and the expected K-L distance were also positively correlated. On average, predictions from the unconditional model had a lower K-L distance than the lowest AIC model; however, contrary to expectation, model averaging was less effective at reducing model bias (i.e., reducing \(E_p(I) \)) as \(r \) was increased (Table 2).

Study 2: methods

This study focused on the effect of flower number on bumble bee arrival rates. During this study \(r \) one-flowered and \(r \) two-flowered plants were chosen randomly from an area within the forest where microhabitat was consistent (e.g., all plants were unshaded, plant density was similar, and soil moisture varied little). Plants were again monitored for 30 min but this time the number of pollinator visits to each plant was recorded.

Study 2: truth and approximating models

To keep the number of outcomes for this study tractable, the number of visits to a plant was recorded as either \(y = 0, 1, 2, 3, \) or \(4^+ \), the latter indicating that four or more visits were observed. Data for this study are a set of 10 integers, denoted \(n(y, f) \), which indicate the number of \(f \)-flowered plants receiving \(y \) visits. These data satisfy \(\Sigma n(y, f) = r \) for \(f = 1, 2 \). The number of possible outcomes given \(r \) replicates is \(Z = [(r + 1)(r + 2)(r + 3)(r + 4)/24]^r \). For this study, I examined two levels of plant replication: \(r = 5 \) (\(Z = 15876 \)), and \(r = 10 \) (\(Z = 1002001 \)).

Bumble bee arrivals to plants was modeled as a constant Poisson process. Plant visits were independent and bees visited one- and two-flowered plants at rate \(\alpha(1) = 2.2 \) and \(\alpha(2) = 3.8 \) visits/h, respectively. Thus, two-flowered plants received visits at a higher rate, which was less than twice the rate for one-flowered plants. The true probability distribution of outcomes \(p \) was calculated in a similar manner to study 1, except that the binomial distribution was replaced by a multinomial distribution because there were five possible observations for each plant.

I compared three models for this study, all of which assumed that bumble bee arrivals were a constant Poisson process. The models can be summarized as follows.

Table 1. Statistics from 2000 trials illustrating the performance of the models for both foraging studies.

<table>
<thead>
<tr>
<th>(r)</th>
<th>Model</th>
<th>(E_p(I)) (%)</th>
<th>Lowest (I) (%)</th>
<th>Lowest AIC (%)</th>
<th>Lowest AICc (%)</th>
<th>AIC SD</th>
<th>(E_p(w)) (%)</th>
<th>(w) SD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>(M_1)</td>
<td>1.35</td>
<td>1.9</td>
<td>14.5</td>
<td>21.7</td>
<td>1.3</td>
<td>19.7</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>(M_2)</td>
<td>2.34</td>
<td>3.0</td>
<td>13.2</td>
<td>6.2</td>
<td>2.6</td>
<td>18.2</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>(M_3)</td>
<td>0.95</td>
<td>50.7</td>
<td>45.7</td>
<td>66.0</td>
<td>2.0</td>
<td>33.5</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>(M_4)</td>
<td>1.40</td>
<td>44.4</td>
<td>26.7</td>
<td>6.2</td>
<td>2.6</td>
<td>28.6</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>(M_5)</td>
<td>2.99</td>
<td>0.0</td>
<td>7.6</td>
<td>7.6</td>
<td>3.0</td>
<td>10.6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>(M_6)</td>
<td>2.71</td>
<td>0.2</td>
<td>7.2</td>
<td>7.2</td>
<td>3.3</td>
<td>14.0</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>(M_7)</td>
<td>1.69</td>
<td>19.2</td>
<td>37.6</td>
<td>43.1</td>
<td>3.1</td>
<td>31.1</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>(M_8)</td>
<td>1.27</td>
<td>80.7</td>
<td>47.8</td>
<td>42.2</td>
<td>2.9</td>
<td>44.3</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>(M_9)</td>
<td>4.61</td>
<td>0.0</td>
<td>2.9</td>
<td>2.9</td>
<td>4.5</td>
<td>5.9</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>(M_{10})</td>
<td>3.56</td>
<td>0.0</td>
<td>6.0</td>
<td>5.7</td>
<td>4.0</td>
<td>10.2</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>(M_{11})</td>
<td>2.40</td>
<td>7.5</td>
<td>26.1</td>
<td>29.5</td>
<td>4.0</td>
<td>26.6</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>(M_{12})</td>
<td>1.15</td>
<td>92.5</td>
<td>65.0</td>
<td>61.8</td>
<td>2.9</td>
<td>57.3</td>
<td>26.0</td>
</tr>
<tr>
<td>Study 2</td>
<td>(M_1)</td>
<td>1.04</td>
<td>0.2</td>
<td>33.2</td>
<td>33.8</td>
<td>2.9</td>
<td>30.7</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>(M_2)</td>
<td>0.57</td>
<td>78.6</td>
<td>60.3</td>
<td>63.4</td>
<td>2.9</td>
<td>43.0</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>(M_3)</td>
<td>1.23</td>
<td>21.3</td>
<td>6.6</td>
<td>2.8</td>
<td>2.5</td>
<td>26.3</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>(M_{10})</td>
<td>1.55</td>
<td>0.0</td>
<td>26.4</td>
<td>26.5</td>
<td>3.6</td>
<td>24.8</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>(M_{11})</td>
<td>0.58</td>
<td>71.7</td>
<td>69.1</td>
<td>69.9</td>
<td>3.2</td>
<td>48.1</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>(M_{12})</td>
<td>1.04</td>
<td>28.4</td>
<td>4.6</td>
<td>3.7</td>
<td>2.8</td>
<td>27.1</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Notes: Measures include level of plant replication (\(r \)), expected Kullback-Leibler (K-L) distance (\(E_p(I) \)), percentage of times that the model had the lowest K-L distance (\(E_p(I) \)), percentage of times that the model had the lowest AIC and AICc value, the standard deviation (SD) of AIC values, expected Akaike weights (\(E_p(w) \)), and the standard deviation of the Akaike weights (\(w \)). Bold values of \(E_p(I) \) indicate the best K-L model.
Figure 3. AIC and AICc estimates of the relative, expected Kullback-Leibler distance for (a) study 1 and (b) study 2. The solid line indicates a 1:1 relationship. Circles indicate means, and vertical bars indicate the variation observed (SD) among AIC calculations across 2000 trials. Standard deviations for AICc values are the same as those for AIC and have been omitted for clarity.

Models

- **M5**: \(\alpha(f) = a\) (arrival rate is constant across plants, regardless of flower number, \(\theta = \{a\}\)).
- **M6**: \(\alpha(f) = fb\) (arrival rate varies linearly with flower number, \(\theta = \{b\}\)).
- **M7**: \(\alpha(1) = a_1, \alpha(2) = a_2\) (arrival rate varies with flower number, \(\theta = \{a_1, a_2\}\)).

Models M5 and M6 make the same assumptions as M1 and M3 of the previous study, respectively. Models M6 and M7 both assume that flower number affects visitation rate; however, M7 has no restriction on the form of the relationship. Model M7 is so flexible it can match the truth exactly; however, it may not be particularly informative because it does not suggest any mechanism. If M7 fits the data well it would suggest the need for alternative hypotheses.

Study 2: results

Analyses for this study are presented for two levels of plant replication \(r = 5\) and 10. In both cases, model M6 was the best K-L model, indicating that the data include too little information \((r\) was too low) to estimate accurately model parameters for M7, even though it was used to generate the data. AIC and AICc were both most likely to choose the best K-L model in all cases (Table 1). As in the previous study, AIC and AICc values both provided a relatively unbiased estimate of the relative, expected K-L distance (Fig. 3). Variation in AIC and AICc values was comparable to that of the previous study (Table 1). Again, the rule of thumb for retaining the best K-L model was supported; however, \(\Delta\) values calculated from AICc values were more likely to lead to correct retention than AICc (Table 2).

In contrast to the previous study, Akaike weights provided relatively poor estimates of the probability of a model being selected by AIC, and of a model’s probability of being the best K-L model (Table 1). Variation in Akaike weights among trials was again very high (Table 1). For this study, the unconditional model had on average a higher K-L distance than the best K-L model, indicating that model averaging did not reduce model bias. As with the previous study, the unconditional model performed worse as \(r\) was increased (Table 2).

Discussion

AIC allows models to be compared, thereby providing a formal way to compare theories. AIC estimates the expected, relative K-L distance, and the model having the lowest value for this metric is termed the best K-L model. AIC attempts to reward models that are robust to parameterization. For example, M7 was not the best K-L model for study 2, even though it generated the data for the simulations (Table 1). In this case, model M7 suffers from overfitting because, when it is fit to common outcomes of the study, its parameter estimates are often so poor that it then predicts other outcomes that do not reflect outcomes that are truly likely. The results presented here illustrate how AIC reflects model parsimony (i.e., a trade-off between model prediction bias and parameter uncertainty).

AIC can be applied to data combined from multiple studies that do not necessarily have the same design. For example, suppose study 1 and study 2 were performed with different plant or pollinator species, or in different locations. By combining data from both studies and carefully constructing appropriate probabilistic models, AIC could be used to compare competing theories regarding how flower number affects arrivals in a more general context. Hence, AIC can provide a formal framework for constructing an ecological synthesis.

How AIC ranks models depends on the amount and type of data. Simpler models often rank highly when data are scarce; however, more complex models typically improve their ranking as more data is collected, provided they incorporate important processes (Table 1, study 1). This data dependence is important when analyzing results from an AIC analysis. For example,
if plant replication were increased for study 2, then eventually model M_7 would be judged a better K-L model than M_6. This result would suggest that flower number affects bumble bee arrival rates, but this effect is not simply proportional to flower number. This result would not be unexpected as it is likely that the combination of many factors will make the relationship nonlinear. However, the fact that much data were required to recognize M_7 as a better K-L model reflects the effectiveness of the simpler model, M_6, at capturing much of the truth. Results from study 2 demonstrate the need for care when interpreting results from an AIC analysis; simply ignoring models with a Δ value greater than some predetermined threshold (e.g., 2) may not reflect the value of the associated hypothesis. The more data collected, the less likely a useful simple model will be judged best according to AIC.

Unavoidable sampling error means the model with the lowest AIC value is not necessarily the best K-L model. In order to incorporate this uncertainty a model selection criterion needs to be adopted. Burnham and Anderson (2002) suggest a very simple selection criterion based on model Δ values, which is supported by the results presented here. It is common for AIC analyses to retain models only if their Δ value is < 2 (e.g., Westphal et al. 2003); however, the results presented here suggest that a larger threshold may be appropriate if a probability of 0.95 or more of retaining the best model is desired. Fig. 3 and Table 1 suggest that this rule of thumb works well because the variation in AIC values among trials (not models) is relatively invariant among models and the amount of data collected. I found the standard deviation for AIC (and AIC$_c$) values for the best K-L model to be approximately 3 in all cases (Table 1). A very crude estimate of the probability of not correctly retaining the best K-L model can be made if we assume that AIC values among trials are normally distributed, and AIC values for each model are independent. In fact, simulations show that neither of these assumptions are quite true, as the AIC values among trials tend to have fatter upper tails and AIC values among models are slightly positively correlated. However, if the best- and second-best K-L models both have independent, normally distributed AIC values with standard deviation σ, then the Δ value of the best K-L model should also be normally distributed with a standard deviation of $\sqrt{2}\sigma$. If $\sigma = 3$ and the mean AIC of the second-best model is two units greater than that of the best K-L model, then there is a 31.9% chance that the Δ value for the best model is greater than 0. For mean AIC differences of 4, 7, and 10, the percentages of incorrectly choosing the best K-L model are 17.3, 4.9, and 0.9%, respectively. Simulations indicate that the probability the best K-L model is not retained, is about a third as often than suggested by this approximation (Table 2), mostly because the AIC values are positively correlated among models. Consistency in the variation in AIC values for the better models across all cases investigated, provides a potential clue to why the rule of thumb might work well in general. The robustness of this result needs to be investigated further.

Results from both studies showed no appreciable advantage to using the corrected version of AIC, despite the ratio of independent data to estimated parameters being low. A reason for this lack of improvement may be due to the correction factor being based on assumptions that do not match well with the foraging characteristics. The robustness of this result needs to be investigated further.
However, the sample sizes considered here might be representative of many ecological systems where obtaining data is difficult or expensive. Relatively few data resulted in high variation among Akaike weights among trials, which limited their utility. Expected Akaike weights provided reasonable estimates of choosing the best AIC model among trials for study 1, but were poor for study 2 (Table 1). When Akaike weights were used for model averaging their ability to reduce model bias (i.e., $E_\theta(f)$) was mixed. Model averaging produced slightly better model predictions for study 1, but always resulted in worse predictions for study 2 (Table 2). In all cases, model averaging performed worse as plant replication r was increased. Bootstrapping could be used to estimate the variation in Akaike weights among repeated trials (Buckland et al. 1997), which would indicate when caution needs to be employed when using Akaike weights. These results support calls for continued research on the effectiveness of model averaging (Burnham and Anderson 2004).

Typically, attempts to evaluate the AIC approach have involved generating data from a known model and then determining the probability that the generating model is selected when it is included in a set of competing models (Anderson et al. 1998, Burnham and Anderson 2002). The advantage of this approach is that K-L distances do not need to be estimated; however, this is strictly not a true test of AIC because the best K-L model, which is what AIC seeks, may not be the model that generated the data (e.g., Table 1, study 2). It is unclear how general results regarding AIC performance are that come from studies where AIC is assessed according to criterion other than selecting the best K-L model.

The results presented here are representative of many other variations of the truth that I investigated. It is difficult to generalize too much from only two simple studies; however, results from both studies support a commonly adopted rule of thumb for retaining models based on AIC differences. On the other hand, the results suggest caution when applying correction factors, and model averaging with Akaike weights. These results highlight the need for further research on identifying conditions where AIC analyses are likely to be reliable (e.g., study design and characteristics of the data) and how analyses involving AIC should be interpreted.

ACKNOWLEDGMENTS

The author gratefully thanks L. D. Harder, W. A. Nelson, E. A. Johnson, and reviewers for their helpful comments. A G8 legacy chair in wildlife ecology, The University of Calgary, provided funding.

LITERATURE CITED

